Elementary maths for GMT

Linear Algebra

Part 1: Vectors, Representations

Algebra and Linear Algebra

- Algebra: numbers and operations on numbers

$$
\begin{aligned}
& -2+3=5 \\
& -3 \times 7=21
\end{aligned}
$$

Linear Algebra: tuples, triples ... of numbers and operations on them

- Assists in geometric computations

Vectors: definition

- A vector in \mathbb{R}^{d} is an ordered d-tuple $v=\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{d}\end{array}\right)$
- In \mathbb{R}^{3}, for example: $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$
$-\left(\operatorname{or}\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)\right.$, or $\left(\begin{array}{l}x_{v} \\ y_{v} \\ z_{v}\end{array}\right)$, or $\left(v_{1}, v_{2}, v_{3}\right)$, or \ldots)

Vectors: algebraic interpretation

- A 2D vector $\binom{x_{v}}{y_{v}}$ can be seen as the point $\left(x_{v}, y_{v}\right)$ in the Cartesian plane

Vectors: notation

- A 2D vector should be denoted as $\binom{x_{v}}{y_{v}}$ or as $\left(x_{v}, y_{v}\right)^{T}$
- The T in the exponent stands for transposed
- A 2D point should be denoted as $\left(x_{v}, y_{v}\right)$
- Be aware of misused notation (mostly point notation used for a vector)

Vectors: geometric interpretation

- A 2D vector $\binom{x_{v}}{y_{v}}$ can be seen as an offset from the origin
- Such an offset (arrow) can be translated

Vectors: length and scalar multiple

- The Euclidean length of a d-dimensional vector v

$$
\text { is }\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{d}^{2}}
$$

- A scalar multiple of a d-dimensional vector v is $\lambda v=\left(\lambda v_{1}, \lambda v_{2}, \ldots, \lambda v_{d}\right)^{T}$
- Note that v and λv have the same direction or opposite directions

Parallel vectors

- Two vectors v_{1} and v_{2} are parallel if one is a scalar multiple of the other, i.e. there is a $\lambda \neq 0$ such that $v_{2}=\lambda v_{1}$
- Note that if one of the vectors is the null vector, then the vectors are considered neither parallel nor not parallel

Unit vectors

- A vector v is a unit vector if $\|v\|=1$
- Normalization
- Questions
- Given an arbitrary vector v, how do we find a unit vector parallel to v ?
- Can every vector be normalized?

Addition of vectors

- Given two vectors in \mathbb{R}^{d},

$$
\begin{aligned}
& v=\left(v_{1}, v_{2}, \ldots, v_{d}\right)^{T} \text { and } \\
& w=\left(w_{1}, w_{2}, \ldots, w_{d}\right)^{T}
\end{aligned}
$$

their sum is defined as
$v+w=$
$\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{d}+w_{d}\right)^{T}$

- Q: How would subtraction be defined?

Addition of vectors

- Addition of vectors is commutative as it can be seen easily from the geometric interpretation
- Q: show algebraically that vector addition is commutative
- Q: what is the relation
 between $\|v\|,\|w\|$, and $\|v+w\|$?

Bases in 2D

- A 2D vector can be expressed as a combination of any pair of non-parallel vectors
- For instance, in the figure, $a=1.5 v+0.6 w$
- Such a pair is called linearly independent, and forms a 2D basis
- The extension to higher dimensions is straightforward

Orthonormal basis in 2D

- Two vectors form an orthonormal basis in 2D if (1) they are orthogonal to each other, and (2) they are unit vectors
- The advantage of an orthonormal basis is that lengths of vectors, expressed in the basis, are easy to calculate

The null vector

- The null vector $\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$ is special
- It acts as the zero for addition of vectors
- It is the only vector that has length zero
- It is the only vector that does not have a direction
- It can not be used as a base vector

Dot product

- For two vectors $v, w \in \mathbb{R}^{d}$, the dot product is defined as

$$
v \cdot w=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{d} w_{d}
$$

or

$$
v \cdot w=\sum_{i=1}^{d} v_{i} w_{i}
$$

- We have $\cos \theta=\frac{v \cdot w}{\|v\|\|w\|}$, where θ is the angle between the two vectors
- Note that the dot product is also called inner product or scalar product and that the result of the operation is a scalar (not a vector)

Dot product

- Questions
- What is the inner product of an arbitrary unit vector with itself?
- What do we know if for two vectors v and w we have that $v \cdot w=0$?

Cross product

- For two vectors $v, w \in \mathbb{R}^{3}$, the cross product is defined as

$$
v \times w=\left(\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right)
$$

- Q: Show that $v \times w$ is orthogonal to both v and w
- We have that $\|v \times w\|=\|v\|\|w\| \sin \theta$, where θ is the angle between v and w
- Note that the result of the operation is a vector

Cross product

- Questions

- It is possible or necessary that v and w are orthogonal to form $v \times w$?
- What is $v \times w$ if v and w are parallel?

Products and null vector

- Questions
- What is the dot product of a vector and the null vector?
- What is the cross product of a vector and the null vector?

Bases in 3D

- You need three vectors to form a basis in 3D
- If u, v, and w form a basis, then any vector a in 3D can be expressed as

$$
a=\mu u+\lambda v+\rho w
$$

where μ, λ, and ρ are scalars

- Q: Let u, v, and w be three vectors (no one is the null vector). Suppose that u and v are not parallel, u and w are not parallel, and v and w are not parallel. Do u, v, and w always form a basis?

Linear dependence in 3D

- If for three vectors u, v, and w in 3D (no null vectors), we have $w=\mu u+\lambda v$ where μ and λ are scalars, then u, v, and w are linearly dependent
- If such μ and λ do not exist, then they are linearly independent
- Any three linearly independent vectors in 3D form a 3D basis

Orthonormal 3D bases

- Three vectors form an orthonormal basis in 3D if (1) each pair of them is orthogonal, and (2) they are unit vectors
- Questions
- What would you do to test if three 3D vectors form an orthonormal basis?
- Suppose that two vectors u and v in 3D are orthogonal, and they are unit vectors. Let w be the cross-product of u and v. What can you say about u, v, and w (do they form an orthonormal basis)?

Left- and right-handed systems

- Coordinate systems in 3D come in two flavors: lefthanded and right-handed
- There are arguments for both systems for
- The global system
- The camera system
- Objects systems

Camera coordinate system

World coordinate system

Coordinate transformations

- A frequent operation in graphics is the change from one coordinate system (e.g. the (u, v, w) camera system) to another (e.g. the (x, y, z) global system)
- Having orthonormal bases for both systems makes the transformations simpler

2D implicit curves

- An implicit curve in 2D has the form $f(x, y)=0$
- f maps two-dimensional
 points to a real value; the points for which this value is 0 are on the curve, while other points are not on the curve

Implicit representation of circles

- The implicit representation of a 2D circle with center c and radius r is

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}-r^{2}=0
$$

- So for any point p that lies on the circle, we have
$(p-c) \cdot(p-c)-r^{2}=0$, so $\|p-c\|^{2}-r^{2}=0$, which gives $\|p-c\|=r$

Implicit representation of lines

- A well-known representation of lines is the slopeintercept form

$$
y=a x+b
$$

- This can easily be converted to

$$
-a x+y-b=0
$$

- If $b=0$, the line intersects the origin, and we have

$$
n \cdot p=0, \text { with } p=\binom{x}{y} \text { and } n=\binom{-a}{1}
$$

- Q: What if the line does not intersect the origin?

2D parametric curves

- A parametric curve is controlled by a single parameter, and has the form

$$
\binom{x}{y}=\binom{g(t)}{h(t)}
$$

- Parametric representations have some advantages over functions, even if a function would suffice to represent the curve

Parametric equation of a circle

- The parametric equation of a 2D circle with center c and radius r is

$$
\binom{x}{y}=\binom{x_{c}+r \cos \phi}{y_{c}+r \sin \phi}
$$

Parametric equation of a line

- The parametric equation of a line through the points p_{0} and p_{1} is

$$
\binom{x}{y}=\binom{x_{p_{0}}+t\left(x_{p_{1}}-x_{p_{0}}\right)}{y_{p_{0}}+t\left(y_{p_{1}}-y_{p_{0}}\right)}
$$

- This can alternatively be written as

$$
p(t)=p_{0}+t\left(p_{1}-p_{0}\right)
$$

Conversion between representations

- It is convenient to be able to convert a parametric equation of a line into an implicit equation, and vice versa
- Q: How do we do that?

Implicit surfaces: from 2D to 3D

- Recall that an implicit curve has the form $f(x, y)=0$
- The 3D generalization is an implicit surface with a similar form $f(x, y, z)=0$
- Fun project: try to draw the 4D image of the graph of such function

$$
\begin{gathered}
\left(x^{2} \times\left(1-x^{2}\right)-y^{2}\right)^{2}+\frac{z^{2}}{2} \\
-\frac{1}{40}\left(1+\left(x^{2}+y^{2}+z^{2}\right)\right)=0
\end{gathered}
$$

Implicit one-dimensional curves in 3D?

- Cooking up an implicit function for a onedimensional thingy in 3D is in general not possible; such thingies are degenerate surfaces
- For example, $x^{2}+y^{2}=0$ is a cylinder with radius 0 : the Z-axis
- More complex curves can be described as the intersection of two or more implicit surfaces

Parametric curves and surfaces

- As opposed to implicit curves, it is possible to specify parametric curves in 3D

$$
\begin{aligned}
& x=f(t), \\
& y=g(t), \\
& z=h(t)
\end{aligned}
$$

- Parametric surfaces depend on two parameters

$$
\begin{aligned}
& x=f(u, v), \\
& y=g(u, v), \\
& z=h(u, v)
\end{aligned}
$$

Implicit spheres

- The sphere equation is given by:

$$
\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2}-r^{2}=0
$$

- Just as in the circle case, this can be written in dot product form for any point p on the sphere

$$
\begin{aligned}
& (p-c) \cdot(p-c)-r^{2}=0, \text { so } \\
& \|p-c\|^{2}-r^{2}=0, \text { which gives } \\
& \|p-c\|=r
\end{aligned}
$$

Parametric spheres

- Spheres can also be represented parametrically
- For example, a sphere with radius r centered at the origin has the equation

$$
\begin{aligned}
& x=r \cos \phi \sin \theta, \\
& y=r \sin \phi \sin \theta, \\
& z=r \cos \theta
\end{aligned}
$$

- Q: What would the equation for a sphere with radius r centered at $c=\left(c_{x}, c_{y}, c_{z}\right)$ be?

Parametric spheres

$$
\begin{aligned}
& x=r \cos \phi \sin \theta \\
& y=r \sin \phi \sin \theta, \\
& z=r \cos \theta
\end{aligned}
$$

- The parametric representation of a sphere looks much more inconvenient than the implicit equation
- However, when we have to do texture mapping, the parametric representation turns out to be quite convenient

Implicit planes

- The implicit equation for a plane in 3D looks a lot like the equation for a line in 2D

$$
a x+b y+c z-d=0
$$

- Here, $(a, b, c)^{T}$ is a normal vector of the plane
- Q: What is the meaning of d ?

Parametric planes

- Planes can also be described parametrically
- Instead of one direction vector (as for lines), we need two

$$
\begin{aligned}
& (x, y, z)=\left(x_{p}, y_{p}, z_{p}\right)+ \\
& s\left(x_{v}, y_{v}, z_{v}\right)^{T}+t\left(x_{w}, y_{w}, z_{w}\right)^{T}
\end{aligned}
$$

Implicit and parametric planes

- Implicit equation:

$$
a x+b y+c z-d=0
$$

- Parametric equation:

$$
(x, y, z)=\left(x_{p}, y_{p}, z_{p}\right)+s\left(x_{v}, y_{v}, z_{v}\right)^{T}+t\left(x_{w}, y_{w}, z_{w}\right)^{T}
$$

- Questions
- Is an implicit description of a plane in 3D unique?
- Is a parametric description of a plane in 3D unique?

