Elementary maths for GMT

Linear Algebra

Part 1: Vectors, Representations

Algebra and Linear Algebra

- Algebra: numbers and operations on numbers
 - -2+3=5
 - $-3 \times 7 = 21$
- Linear Algebra: tuples, triples ... of numbers and operations on them
 - Assists in geometric computations

Vectors: definition

• A vector in \mathbb{R}^d is an ordered *d*-tuple $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{pmatrix}$

• In
$$\mathbb{R}^3$$
, for example: $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

- (or
$$\begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$
, or $\begin{pmatrix} x_v \\ y_v \\ z_v \end{pmatrix}$, or (v_1, v_2, v_3) , or ...)

Vectors: algebraic interpretation

• A 2D vector $\begin{pmatrix} x_v \\ y_v \end{pmatrix}$ can be seen as the point (x_v, y_v) in the Cartesian plane

Vectors: notation

- A 2D vector should be denoted as $\begin{pmatrix} x_v \\ y_v \end{pmatrix}$ or as $(x_v, y_v)^T$
 - The T in the exponent stands for transposed
- A 2D point should be denoted as (x_v, y_v)
- Be aware of misused notation (mostly point notation used for a vector)

Vectors: geometric interpretation

- A 2D vector $\begin{pmatrix} x_v \\ y_v \end{pmatrix}$ can be seen as an offset from the origin
- Such an offset (arrow) can be translated

Vectors: length and scalar multiple

- The Euclidean length of a *d*-dimensional vector *v* is $||v|| = \sqrt{v_1^2 + v_2^2 + \dots + v_d^2}$
- A scalar multiple of a *d*-dimensional vector *v* is $\lambda v = (\lambda v_1, \lambda v_2, ..., \lambda v_d)^T$
 - Note that v and λv have the same direction or opposite directions

Parallel vectors

- Two vectors v_1 and v_2 are parallel if one is a scalar multiple of the other, *i.e.* there is a $\lambda \neq 0$ such that $v_2 = \lambda v_1$
- Note that if one of the vectors is the null vector, then the vectors are considered neither parallel nor not parallel

Unit vectors

- A vector v is a unit vector if ||v|| = 1
- Normalization
 - Questions
 - Given an arbitrary vector v, how do we find a unit vector parallel to v?
 - Can every vector be normalized?

Addition of vectors

• Q: How would subtraction be defined?

Addition of vectors

- Addition of vectors is commutative as it can be seen easily from the geometric interpretation
- Q: show algebraically that vector addition is commutative
- Q: what is the relation
 between ||v||, ||w||, and ||v + w||?

Bases in 2D

- A 2D vector can be expressed as a combination of any pair of non-parallel vectors
 - For instance, in the figure, a = 1.5v + 0.6w
- Such a pair is called linearly independent, and forms a 2D basis
- The extension to higher dimensions is straightforward

Orthonormal basis in 2D

- Two vectors form an orthonormal basis in 2D if (1) they are orthogonal to each other, and (2) they are unit vectors
- The advantage of an orthonormal basis is that lengths of vectors, expressed in the basis, are easy to calculate

The null vector

- It acts as the zero for addition of vectors
- It is the only vector that has length zero
- It is the only vector that does not have a direction
- It can not be used as a base vector

Dot product

• For two vectors $v, w \in \mathbb{R}^d$, the dot product is defined as

$$v \cdot w = v_1 w_1 + v_2 w_2 + \dots + v_d w_d,$$

or

$$v \cdot w = \sum_{i=1}^{d} v_i w_i$$

- We have $\cos \theta = \frac{v \cdot w}{\|v\| \|w\|}$, where θ is the angle between the two vectors
- Note that the dot product is also called inner product or scalar product and that the result of the operation is a scalar (not a vector)

Dot product

Questions

- What is the inner product of an arbitrary unit vector with itself?
- What do we know if for two vectors v and w we have that $v \cdot w = 0$?

Cross product

• For two vectors $v, w \in \mathbb{R}^3$, the cross product is defined as

$$v \times w = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$$

- Q: Show that $v \times w$ is orthogonal to both v and w
- We have that ||v × w|| = ||v||||w|| sin θ, where θ is the angle between v and w
- Note that the result of the operation is a vector

Cross product

- Questions
 - It is possible or necessary that v and w are orthogonal to form $v \times w$?
 - What is $v \times w$ if v and w are parallel?

Products and null vector

- Questions
 - What is the dot product of a vector and the null vector?
 - What is the cross product of a vector and the null vector?

Bases in 3D

- You need three vectors to form a basis in 3D
- If *u*, *v*, and *w* form a basis, then any vector *a* in 3D can be expressed as

 $a = \mu u + \lambda v + \rho w$

where μ , λ , and ρ are scalars

Q: Let u, v, and w be three vectors (no one is the null vector). Suppose that u and v are not parallel, u and w are not parallel, and v and w are not parallel. Do u, v, and w always form a basis?

Linear dependence in 3D

• If for three vectors u, v, and w in 3D (no null vectors), we have $w = \mu u + \lambda v$

where μ and λ are scalars, then u, v, and w are linearly dependent

- If such μ and λ do not exist, then they are linearly independent
- Any three linearly independent vectors in 3D form a 3D basis

Orthonormal 3D bases

 Three vectors form an orthonormal basis in 3D if (1) each pair of them is orthogonal, and (2) they are unit vectors

Questions

- What would you do to test if three 3D vectors form an orthonormal basis?
- Suppose that two vectors u and v in 3D are orthogonal, and they are unit vectors. Let w be the cross-product of u and v. What can you say about u, v, and w (do they form an orthonormal basis)?

Left- and right-handed systems

- Coordinate systems in 3D come in two flavors: lefthanded and right-handed
- There are arguments for both systems for
 - The global system
 - The camera system
 - Objects systems

Coordinate transformations

- A frequent operation in graphics is the change from one coordinate system (*e.g.* the (*u, v, w*) camera system) to another (*e.g.* the (*x, y, z*) global system)
- Having orthonormal bases for both systems makes the transformations simpler

2D implicit curves

- An implicit curve in 2D has the form f(x, y) = 0
- f maps two-dimensional points to a real value; the points for which this value is 0 are on the curve, while other points are not on the curve

Implicit representation of circles

• The implicit representation of a 2D circle with center *c* and radius *r* is

$$(x - x_c)^2 + (y - y_c)^2 - r^2 = 0$$

So for any point p that lies on the circle, we have

$$\begin{array}{l} (p-c)\cdot(p-c)-r^2=0 \ , \ \mathrm{so}\\ \|p-c\|^2-r^2=0, \ \mathrm{which \ gives}\\ \|p-c\|=r \end{array}$$

Implicit representation of lines

 A well-known representation of lines is the slopeintercept form

y = ax + b

• This can easily be converted to

$$-ax + y - b = 0$$

• If b = 0, the line intersects the origin, and we have

$$n \cdot p = 0$$
, with $p = \begin{pmatrix} x \\ y \end{pmatrix}$ and $n = \begin{pmatrix} -a \\ 1 \end{pmatrix}$

• Q: What if the line does **not** intersect the origin?

2D parametric curves

• A parametric curve is controlled by a single parameter, and has the form

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} g(t) \\ h(t) \end{pmatrix}$$

 Parametric representations have some advantages over functions, even if a function would suffice to represent ^h the curve

Parametric equation of a circle

• The parametric equation of a 2D circle with center c and radius r is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_c + r \cos \phi \\ y_c + r \sin \phi \end{pmatrix}$$

Parametric equation of a line

• The parametric equation of a line through the points p_0 and p_1 is

$$\binom{x}{y} = \binom{x_{p_0} + t(x_{p_1} - x_{p_0})}{y_{p_0} + t(y_{p_1} - y_{p_0})}$$

This can alternatively be written as

$$p(t) = p_0 + t(p_1 - p_0)$$

Conversion between representations

- It is convenient to be able to convert a parametric equation of a line into an implicit equation, and vice versa
- Q: How do we do that?

Implicit surfaces: from 2D to 3D

- Recall that an implicit curve has the form f(x, y) = 0
- The 3D generalization is an implicit surface with a similar form f(x, y, z) = 0
- Fun project: try to draw the 4D image of the graph of such function

$$(x^{2} \times (1 - x^{2}) - y^{2})^{2} + \frac{z^{2}}{2}$$
$$-\frac{1}{40} (1 + (x^{2} + y^{2} + z^{2})) = 0$$

Implicit one-dimensional curves in 3D?

- Cooking up an implicit function for a onedimensional thingy in 3D is in general not possible; such thingies are degenerate surfaces
 - For example, $x^2 + y^2 = 0$ is a cylinder with radius 0: the Z-axis
- More complex curves can be described as the intersection of two or more implicit surfaces

Parametric curves and surfaces

 As opposed to implicit curves, it is possible to specify parametric curves in 3D

$$x = f(t),$$

$$y = g(t),$$

$$z = h(t)$$

 Parametric surfaces depend on two parameters

$$x = f(u, v),$$

$$y = g(u, v),$$

$$z = h(u, v)$$

Implicit spheres

- The sphere equation is given by: $(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - r^2 = 0$
- Just as in the circle case, this can be written in dot product form for any point p on the sphere

$$(p-c) \cdot (p-c) - r^2 = 0$$
, so
 $||p-c||^2 - r^2 = 0$, which gives
 $||p-c|| = r$

Parametric spheres

- Spheres can also be represented parametrically
 - For example, a sphere with radius r centered at the origin has the equation

 $x = r \cos \phi \sin \theta,$ $y = r \sin \phi \sin \theta,$ $z = r \cos \theta$

• Q: What would the equation for a sphere with radius r centered at $c = (c_x, c_y, c_z)$ be?

Parametric spheres

 $x = r \cos \phi \sin \theta,$ $y = r \sin \phi \sin \theta,$ $z = r \cos \theta$

- The parametric representation of a sphere looks much more inconvenient than the implicit equation
- However, when we have to do texture mapping, the parametric representation turns out to be quite convenient

Implicit planes

- The implicit equation for a plane in 3D looks a lot like the equation for a line in 2D ax + by + cz - d = 0
- Here, (a, b, c)^T is a normal vector of the plane
- Q: What is the meaning of *d*?

Parametric planes

- Planes can also be described parametrically
- Instead of one direction vector (as for lines), we need two

$$(x, y, z) = (x_p, y_p, z_p) + s(x_v, y_v, z_v)^T + t(x_w, y_w, z_w)^T$$

Implicit and parametric planes

Implicit equation:

$$ax + by + cz - d = 0$$

- Parametric equation: $(x, y, z) = (x_p, y_p, z_p) + s(x_v, y_v, z_v)^T + t(x_w, y_w, z_w)^T$
- Questions
 - Is an implicit description of a plane in 3D unique?
 - Is a parametric description of a plane in 3D unique?

